
A Reusable Software Framework for Rover Motion Control

Mihail Pivtoraiko, Issa A.D. Nesnas, Hari D. Nayar
Jet Propulsion Laboratory, California Institute of Technology

{mpivtora, nesnas, nayar}@ jpl.nasa.gov

Abstract

This article describes the motion control interface

for the Coupled Layer Architecture for Robotic
Autonomy (CLARAty). This interface is used for
controlling motors and other actuators in rovers and
manipulators. Its development was initiated to address
the needs of NASA-supported research projects, while
the resulting design is general and can be applied to
other systems. This paper lists and motivates the
principal requirements for the interface, accumulated
over more than seven years of the project development
to date. A design of the motor interface that satisfies
these requirements is described in detail. The key
benefits of the design include ease of learning, using
and maintaining, as well as significant code reuse.

1. Introduction

CLARAty is an object-oriented software infra-
structure for the development and integration of new
robotics algorithms, primarily for the use on the rovers
[1]. Its purpose is to provide a common interface to a
number of heterogeneous robotics platforms. This
provides several important benefits, including
simplifying the initial development and reuse of
robotics algorithms in such areas as machine vision,
manipulation, navigation, and planning [2]. CLARAty
currently supports research rover platforms developed
and used at the Jet Propulsion Laboratory, Ames
Research Center, Carnegie Mellon University, and the
University of Minnesota. In this paper, we focus on a
part of this infrastructure that is responsible for
designing and executing motions of actuators. Below
we define the software engineering problem at hand
and situate this work with regard to the state of the art.
Further, we describe the requirements of software
interfaces for motion control, followed by the details
of a specific design that implements those
requirements.

1.1. Problem Statement

Here we propose a solution to the problem of
designing a software interface that requires satisfaction
of three important properties:
• supporting and communicating directly with the

physical embodiments of the controlled actuators
(referred to as hardware motors),

• featuring high-efficiency to allow real-time
execution on physical systems (Figure 1),

• maximizing software reuse across hardware
systems and across software applications.

Designing good software interfaces that completely
satisfy any one of these requirements is challenging.
The CLARAty framework requires satisfaction of all
three, thus making the present endeavor a hard
problem. Here we propose a software Application
Programming Interface (API) to motion hardware that
leverages our experience in this framework and
addresses the desired design properties.

Figure 1. Research prototype rovers contain
many motors that must be controlled in a
coordinated fashion.

1.2. Prior Works

CLARAty has included a motion control interface
since its inception in 1999. Initial versions of this
interface were capable [3], but were not flexible
enough to meet the demands of more advanced
trajectory generation algorithms. With increased
demands on rover motion control, fueled in part by the
latest research in motion planning, it became necessary
to extend the interface. The extension, presented
herein, allows increasing the flexibility of using
motion trajectories, as well as improving the code
reusability aspects of the software. Similar interface
development efforts have been done previously in
CLARAty [4], in particular in the domains of rover
navigation [5] and image acquisition [2]. This work
builds on its predecessors, but necessarily differs in
many ways due to the particulars of interfacing for
motor control.

The topic of reusable application programming
interfaces for robot actuator control has received a fair
amount of attention. Most architectures emphasized
some aspects of this topic over others. Functional
aspects of robotics systems have been studied in [6]. A
higher-level perspective on robot control was used in
[7][8]. However, in this work we focused on all
relevant facets of actuator control, from application
programmer’s experience using the interface to
maintainability and efficiency of the code. Some recent
work in other projects addresses the ease of interfaces
and code reuse as well [9][10], however our approach
differs in a number of features and may be a potential
alternative. We hope that the ideas presented herein
could serve to encourage the inquiry into good
programming interfaces to robotics motion control.

2. Requirements of the Motion Control
Interface

The design of the presented motion control
interface addresses a number of key requirements.
Many of these requirements are shared with other
components of CLARAty, namely camera interfaces
[2]. Though most of the requirements were eventually
supported in the final design, some were more
influential than others. In this section we discuss the
driving requirements.

Requirement 1: Convenience of basic
operations. One of the most important requirements of
an effective motor API is the convenience and
simplicity of performing common operations with the
motors. This is especially important for projects with
high turn-over rates of developers, such as research

tasks at educational institutions. Simplicity of the
interface is also helpful for maintenance and code
reuse.

From our experience, the most frequent operations
include moving the motor:
• to achieve a motion target (setpoint),
• to follow a specified trajectory profile.
These motions are specified in terms of (angular or
linear) distance, velocity, acceleration or other
quantities. This requirement states that the user shall be
able both to specify the above motor motions and to
execute them on the motor easily, e.g. using only a few
lines of simple code.

Requirement 2: Accessibility of low-level
functionality. Application developers are sometimes
interested in having fine control over functionality of
the hardware motors, as this is essential to making
some algorithms work well. This requirement states
that the user shall be able to manipulate the full set of
features of the motor hardware using the interface. The
user shall be assured that no other part of the interface
will have any effect on the hardware, while the user
maintains low-level access to it.

Requirement 3: Stability of the interface. A large
variety of motor hardware is being used in robotics,
and general standards for motor programming have not
yet been developed. Figure 2 illustrates this variety
with two particular research prototype rovers at JPL.
The FIDO rover shown in the figure on the left
features a centralized hardware architecture. This rover
performs both trajectory generation and servo control
functions in software on the main computer. The
Rocky8 rover on the right uses dedicated
microcontrollers to perform these motor control
functions in hardware.

This requirement states that the motor API shall
support the presently available motor hardware using

Figure 2. A comparison of motor control of two
JPL research prototype rovers: FIDO (left) and
Rocky8 (right). FIDO performs centralized motor
control, while Rocky8 features a distributed
system with dedicated controllers.

the same basic set of methods. It also shall be able to
support the likely future variants of it. The interface
shall be extendible to support future capability without
major changes.

Requirement 4: Resource Sharing. Some
applications require the motor hardware resources to
be shared among different software processes. For
example, several programs may require access to a
particular motor. This requirement states that the motor
API shall allow two or more separate software
processes to access and utilize the motor hardware. It
shall also implement error checking to inform the users
if the hardware is unavailable due to resource sharing.

Requirement 5: Synchronization. Many
algorithms require robot motions to be synchronized in
time. This is particularly necessary for locomotion,
advanced maneuvering and manipulator motion. This
requirement states that the motor API shall allow
synchronizing the operation of two or more hardware
motors. The interface shall provide feedback to the
user regarding the synchronization capability that is
possible and the quality of synchronization during
motion.

3. Motion Control Interface Design

In this section we describe our solution to the
problem of designing an effective motion control
interface. We will present the major design decisions
and the features that result from it. We will also note
the aspects of the design that satisfy the previously
outlined requirements.

3.1. Motor Class Hierarchy

The first version of the motor API class hierarchy
in CLARAty featured a base motor class and a derived
class that specialized the motor to the hardware. While
this design was very simple, it only allowed for a
hardware adaptation, but not for a functional
adaptation. For example, a joint could not be derived
from a motor class in this design. To address this
limitation, we introduced the bridge pattern [11] in the
second version that separated the functional motor
abstractions from the implementation abstractions.
However, this resulted in a significant increase in
complexity without adding significant flexibility. The
complexity was caused by the development of parallel
hierarchies for both motor hardware code and the
functional motor abstractions. Both hierarchies became
similarly complex, which effectively doubled the
complexity of the design. On the other hand, the
flexibility was still insufficient because adding new

functionality required modifying both hardware code
and motor abstractions.

The third version, presented here, combines the
simplicity of the first version with some of the features
of the second version in a simplified class hierarchy,
shown in Figure 3. Similar to UML notation, arrows in
the figure indicate inheritance, and diamonds indicate
containment.

The generic device class defines a set of member
functions that represents general functionality of all
devices. The base class, derived from the generic class
by simple inheritance, defines a set of member
functions for performing the common operations of the
motors. The application code can be written using the
base class without specifying the motor hardware to be
used.

The adaptation class is in turn derived from the
base class. The principal purpose of this class is to map
the logical motor operations of the base class to the
physical motor operations of the hardware class
(bottom right of the figure). The adaptation class can
also be useful for storing user settings of the motor.

The hardware class represents the physical
hardware, independent of how the architecture intends
to use it. Hence, it is not constrained by class
inheritance. Low-level operations of motor hardware
can be implemented as member functions of the
hardware class.

The above class hierarchy forms the foundation of
the motor interface. The generic and base classes in the
figure are unique in the API. The adaptation and
hardware classes are duplicated and tailored to the
motor hardware. Due to this arrangement, the interface
is positioned to satisfy the Requirement 2 (accessibility
of low-level functionality). By eliminating the bridge
pattern, we traded some flexibility (i.e. limited the
extendibility of the motor class) for simplicity and
better maintainability.

Figure 3. Class Hierarchy of the Motor Interface.

3.2. Motor Properties

The information stored in the motor class can be
divided into two types: the properties of the motor
itself and the properties of the motion that it must
execute. Here we discuss the former, while the next
section is dedicated to the latter.

Motor properties are further subdivided into the
motor model and parameters. The model contains
information that describes the hardware and therefore
remains constant across applications. Common
examples of the motor model information include
limits on position, velocity and acceleration. Similar to
general mechanism models [13], the motor model code
and data can be reused to develop simulations of the
motors. In our implementation of the motor interface,
we dedicated a special class to handle the motor model
information. This approach makes it convenient to
store and to load the model from a file, as well as to
share it between copies of the same motor adaptation.
In developing the motor model class, we attempt to
include the values that are relevant for most motors, so
that this class can be reused when controlling various
motor adaptations.

Motor parameters, on the other hand, are values
that can be modified by the application. A common
example of such parameters is controller gains. The
meaning of these parameters is typically specific to a
particular motor adaptation, which makes it difficult to
create generic collections of motor parameters.
Implementing particular parameters in motor
adaptations is the approach we recommend.

3.3. Motor Commands

In this section we describe the second type of motor
information, the properties of the motion command
that the motor must execute. Developing a general
approach to describing motor motions is a challenging
task because it depends not only on the variety of
motor hardware, but also on the variety of applications
and use cases. Here we present the software
framework that captures most common specifications
of robot motion.

From a motor control point of view, the typical
motor motion commands can be classified according to
the hierarchy in Figure 4. At the highest level, a motor
command is classified according to the control mode:
setpoint or trajectory. Both modes are further
classified according to the actual quantity being
commanded: motor position, velocity, torque, etc.

The setpoint control mode provides the motor with
an instantaneous target value that the motor will try to

achieve using its control law (typically using a PID
controller) without the generation of a trajectory
profile. An example of this motor command is moving
N revolutions as fast as possible. The motor command
in this example would be classified as setpoint mode
with control variable of position (i.e. angular position
of the motor shaft). Optionally, limits on derivatives of
the control variable can be specified, if they are
supported by the motor hardware. In our example, by
specifying a limit on the first derivative, we could
obtain a velocity-bounded motion.

In contrast, trajectory control mode refers to a
motion command that must follow a prescribed
trajectory profile. The profile also may be represented
in terms of any control variable supported by the
motor. This control mode has a number of important
applications including manipulator control, advanced
robot locomotion, etc. Coordinated motion of several
motors can be achieved by computing and executing
the trajectories that satisfy the time synchronization
requirements.

In order to implement the trajectory mode of
execution, additional features are necessary in the
motor interface. The methods to represent, generate
and execute the trajectories are covered below.

3.3.1. Representing Trajectories. Our goal is to
enable the motor API to handle all types of trajectories
that are used in robotics applications. This is a
challenging task, and in our experience the best
approach to achieving that is to classify the trajectories
into two categories:
• simple, where we assume a simplest motion that

satisfies the specified boundary conditions (also
referred to as a trapezoidal trajectory), and

• complex, where we allow the trajectory to have an
arbitrary profile.

In our experience, supporting both trajectory types in
the motor interface has satisfied all desired motor
motions so far.

Before we look at both trajectory types in more
detail, it would be helpful to develop some notation.

Figure 4. A hierarchy for classifying typical
motor commands.

Given a certain control variable of the motor, y, a
trajectory τ is typically defined as a mapping from time
t to y, also denoted as τ : t → y [12]. Moreover, since
we are concerned with motion of physical motors, we
can make certain assumptions about this mapping. In
particular, this mapping is a function in mathematical
terms, since a physical motor cannot have more than
one value of its control variable y at the same time.
When discussing trajectories as functions, e.g. y = τ(t),
we will refer to t as the argument, and y as the function
value. The argument typically is a value of time, but
can be another quantity. The function value can be a
value of any control variable, such as position,
velocity, torque, etc.

As suggested above, the term simple trajectory
denotes a trajectory that is only expected to satisfy
boundary conditions and does not specify the profile of
the trajectory itself. The representation of the simple
trajectory includes only a few parameters:
• the boundary conditions:

o the initial and final values of the function
value (and its derivatives),

o the initial and final value of the argument;
• the derivative limits: the allowed ranges of

variation of the function value and its derivatives.
In other words, the boundary conditions specify the
target that the motor must achieve after executing the
trajectory. The derivative limits specify the allowed
ranges of values that the function (e.g. position) and its
derivatives (e.g. velocity) can take on. This can allow
us to make sure that the velocity of the motor never
exceeds a certain range. As a side note, the derivative
limits can be viewed as the model of the system
performing the action, similar to the way the motor
model in Section 3.2 described the capabilities of the
motor.

Figure 5 shows an example of a simple trajectory,
where we would like a motor to move N revolutions
within tf amount of time. The boundary conditions are
as follows:
• the initial value of the function y is 0, and its final

value is N revolutions;
• the initial and final values of all derivatives of y

are 0 (the motor begins and finishes the trajectory
at rest);

• the initial value of the argument is 0 (always the
case for relative motions), and its final value is tf.

 This representation does not specify whether
velocity and other derivatives of the function remain
constant during the steady-state part of the motion.
However, it assumes that they do, based on practical
considerations. Also note that in this example, the
second derivative (acceleration) is discontinuous,

hence the third derivative (jerk) is unbounded. If
necessary, we can use the same representation to
bound the third derivative and represent a smoother
motion.

As we have seen, a simple (trapezoidal) trajectory
can be represented by only a few parameters. A
complex trajectory, however, cannot benefit from this
compactness, because it must prescribe the value of the
function at every value of the argument. In order to
represent the complex trajectories, we rely on a related
software framework in CLARAty, referred to as Math
Function API. Similar to the general motor interface
that is the object of this paper, Math Function API is a
general framework for representing and using any
mathematical function.

The class hierarchy of the Math Function
framework is shown in Figure 6. Math Function API
supports common types of functions, including
polynomial and trigonometric functions (e.g.
Sine_Function and others), as well as sampled
functions (a discrete set of values, capable of
representing an arbitrary sampled function). The
framework supports concatenating individual instances
of Math Function classes into a piecewise function.
The composite pattern [11] is utilized to ensure that an
instance of the piecewise function class can be used as
any other math function as well. The features of the
Math Function classes include not only evaluating the
functions they represent, but also computing their
derivatives and integrals.

Thus, the task of representing the complex
trajectories is handled by the Math Function
framework, specifically designed to represent arbitrary
functions. This relationship is well aligned with other
approaches of code reuse in CLARAty.

Figure 5. An example of a simple trajectory
that achieves N motor revolutions in time tf.
Top: the trajectory in terms of angular
position; bottom: the corresponding
(trapezoidal) trajectory in terms of velocity.

 3.3.2. Generating Trajectories. Now that we have
developed the methods for representing both types of
motor trajectories, we will discuss how they can be
generated. Trajectory generation refers to finding the
complete specification of the trajectory, given its
boundary conditions. In the case of the example of the
trapezoidal trajectory in Section 3.3.1, trajectory
generation would involve finding the times t1 and t2 of
the transitions from ramp-up to plateau and from
plateau to ramp-down, respectively. In case of the
complex trajectory, the generation would involve
computing all values that represent it. For example, in
case of a piecewise polynomial function, this would
include the coefficients of all the polynomials
involved. In the general case of the sampled function,
this would involve computing all of its samples.

The generation of most practical simple
(trapezoidal) trajectories is straight-forward and can be
done in closed-form. However, since the complex
trajectories can be arbitrary, their generation can be
arbitrarily difficult. For example, some trajectory
generation algorithms could involve iterative gradient
descent methods or parametric optimal control. In
order to preserve the uniformity of the motion
representation part of the motor interface in light of
these differences, we decided to separate trajectory
generation from the representation of trajectories
themselves. Thus, trajectory generators are separate
software elements in CLARAty, widely ranging in
complexity. However, the communication between
them and the motor interface occurs via the easy-to-use
trajectory representations, described in Section 3.1.1.
This approach allows the trajectories to be light-weight
both in terms of storage and meaning. In turn, this
facilitates learning and maintenance of the motor
interface.

3.3.3. Executing Trajectories. As was mentioned in
Section 2 and illustrated in Figure 2, there is a large
variation in motor hardware in robotics. This variation

is especially relevant for executing trajectories. In
order to enable the motor interface to be general and
re-usable for a variety of motor hardware, we must
build generality into the method of executing
trajectories. This is the essence of the Requirement 3,
and our method achieves this requirement by placing
the specifics of trajectory execution into the hardware-
specific code, namely the adaptation and hardware
classes in Figure 3. Thus, the application code is able to
manage abstract representations of trajectories only
and pass them directly to the hardware-specific code
for execution.

Algorithm 1 is a code example that demonstrates
the simplicity of setting up a motor and commanding
its motion. The lines 1 and 2 setup the hardware motor
class and its logical adaptation, respectively. Line 3
sets the motor in setpoint control mode, the default
control variable is angular position. Line 4 specifies
the motion by 1 radian, and line 5 enacts the motion.
Separating setting up the motion and enacting it (lines
4 and 5) enables better error handling: the function
start() executes only if there were no errors with
commanding the motion. Line 6 blocks until motor
finished executing the previous trajectory. The motor
is set to the trajectory mode in line 7, and the following
line provides the residual value of the constructor of
Trapezoidal_Trajectory (containing the representation
of a simple trajectory type) as the trajectory to follow.
The single argument means the goal of angular
distance 1.0, and the remaining parameters are set at
defaults, obtained from the motor model. Finally, line
9 executes the trajectory. This example illustrates how
our motor interface satisfies the Requirement 1. The
simplicity of performing this typical motor operation
was enabled by the motor class hierarchy of choice and
crystallizing the particulars of motor control in a few
intuitive parameters.

One of the typical differences in motor hardware is
the method of enacting motor motion. Some motor
controllers implement certain common trajectory types
in hardware. Other motors, including the motors in the

Figure 6. Class hierarchy of the Math
Functions software framework, used for
representing complex trajectories.

1. X_Hw_Motor hw_motor(parameters)
2. X_Motor motor(hw_motor)
3. motor.set_control_mode(SETPOINT_CONTROL)
4. motor.set_setpoint(1.0)
5. motor.start()
6. motor.wait_until_done()
7. motor.set_control_mode(TRAJECTORY_CONTROL)
8. motor.set_trajectory(Trapezoidal_Trajectory(1.0))
9. motor.start()

Algorithm 1. Using the motor interface to
setup a motor and command motions.

JPL FIDO rover, are controlled in software and cannot
benefit from hardware-generated trajectories.
Therefore, the motor adaptation classes must include
the logic to translate the representations of trajectories
from Section 3.3.1 into executable motor commands.
In the case of software motors, this would include
invoking the trajectory generation code to compute
trajectory parameters in software, as was alluded to in
Section 3.3.2.

3.4. Motor Groups

In order to enable synchronization of motors and to
satisfy the Requirement 5, we propose a special class
hierarchy, Motor_Group (Figure 3, left), that parallels
the motor hierarchy (Figure 3, center). While the
Motor classes represent a single motor device, the
Motor_Group represents an arbitrary number of
motors. It also contains additional functionality to
command and execute the motion of its motors in a
coordinated fashion. The Motor_Group inherits from
the Device_Group class due to many similarities
between the motors and other devices in CLARAty,
including cameras [2].

The Motor_Group inherits member functions to
append and remove Motors from the container. The
template function, for_each, supplies a way for some
member functions of Motor to be called for every
motor in the group. This allows, for example, setting
control mode of each motor to the same value in one
line of code. The Motor_Group class also supplies new
member functions that allow synchronized motions by
all motors in the group. Algorithm 2 demonstrates how
a group of motors can be used for coordinated motion.
Lines 1-5 set up the motor group, consisting of two
motors. Line 6 uses the for_each method to set all
motors in the group to trajectory control mode. Line 7
sets up trajectories for each motor in the group, where
the order of arguments corresponds to the order of
appending motors to the group. The motor group

automatically ensures that the motors begin and end
motion at the same time, as fast as motors allow. Line
8 initiates the motion.

Thus, common operations with motor groups are
greatly simplified by the motor interface. Commanding
synchronized motions is nearly as straight-forward as
commanding individual motors. The proposed API
framework allows intuitive naming and structure of the
relevant interface commands.

3.5. Motor Resource Sharing

Enabling sharing the motor resources between non-
cooperating software processes (satisfying the
Requirement 4) is one of the most challenging aspects
of designing the motion control interface. As suggested
above, there are two general types of operations in
using the motors:
• setting and querying motor parameters and

motion,
• commanding the specified motion to start.
The problems due to resource sharing, including
deadlock and starvation, are caused by errors in
providing access to processes to perform either action.
These problems are addressed by separating logical
and physical motors, as shown in Figure 3. Further, we
establish a rule that no more than one physical motor
object must exist for any motor in the system. This
object is shared among all threads.

Similar to the CLARAty camera interface [2], a
hardware motor class is responsible for getting/setting
the parameters of the physical device, commanding
and executing a motion. It also assists in
implementing a locking mechanism which allows a
logical motor to block any other logical motor from
setting motor parameters or commanding a motion.

In contrast, a logical motor represents the user's
view of the motor. Multiple instances of the logical
motor may exist in the system. Parameter settings
made in one logical motor are cached locally and do
not affect the state of another logical motor, even if
both refer to the same piece of motor hardware. The
member function of the logical motor that starts
execution of a motion affects an atomic operation
which both sets the physical motor parameters to
match the user's view of the motor state and starts
executing the motion. Using this interface, the user
does not need to write any special code to maintain
task safety: thanks to the motor interface, the code
written for single-threaded operation will operate
correctly if the motor resource is shared between
multiple threads [2] as long as the motor adaptation is
implemented in a thread safe manner.

1. X_Hw_Motor hw_motor1(parameters)
2. X_Hw_Motor hw_motor2(parameters)
3. X_Motor motor1(hw_motor1)
4. X_Motor motor2(hw_motor2)
5. X_Motor_Group motor_grp(motor1, motor2)
6. motor_grp.for_each(set_control_mode,
 TRAJECTORY_CONTROL)
7. motor_grp.set_trajectory(Trapezoidal_Trajectory(1.0),
 Trapezoidal_Trajectory(2.0))
8. motor_grp.start()

Algorithm 2. Using the motor interface to setup
a motor group for coordinated motions.

4. Conclusions and Future Work

The presented motion control interface was
implemented and tested on research prototype rovers at
JPL. Figure 7 shows an example of the FIDO rover
executing a maneuver amid dense obstacles using the
motor interface. The interface made it easy to program
the coordinated motion of 12 steering and drive motors
of the rover’s mobility system, as well as the precision
motions of pan and tilt joints in its mast.

Figure 7. FIDO rover executes a maneuver
using the motor interface.

We presented an approach to developing a motion
control API that maximizes the effectiveness of
learning, usage and maintenance. This interface is
likely to be helpful for applications that feature high
developer turn-over rates and pursue code reuse. In
future work, we plan to continue extending this
interface to new robotics platforms intended for both
space and terrestrial robotics research.

5. Acknowledgments

We thank Rich Petras, Won Kim, Khaled Ali, Lorenzo
Flueckiger and many others for the helpful ideas they
contributed. We would also like to thank Mike
McHenry, Jeffrey Edlund, Daniel Gaines, Tara Estlin,
Daniel Clouse, Robert Steele, Hanz Utz and others for
participating in the code review process. Our thanks
also go to our sponsor, the NASA Mars Technology
Program, for their support. The work described in this
paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology with contributions
from NASA Ames Research Center and Carnegie
Mellon under a contract to the National Aeronautics
and Space Administration.

6. References

[1] I. A. Nesnas et al., “CLARAty: Challenges and Steps

Toward Reusable Robotic Software”, International J. of
Advanced Robotic Systems, 3(1), pp. 23-30, 2006.

[2] D.S. Clouse, Issa A.D. Nesnas and C. Kunz, "A
Reusable Camera Interface for Rovers", Int. Conf. on
Robotics and Automation Workshop – Software
development and integration in robotics: understanding
robot software architectures, Rome, Italy, 2007.

[3] R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras,
H. Das, "CLARAty: Coupled Layer Architecture for
Robotic Autonomy", JPL Technical Report D-19975,
Dec 2000.

[4] I. A. Nesnas, “The CLARAty Project: Coping with
Hardware and Software Heterogeneity”, Software
Engineering for Experimental Robotics, Springer Tracts
on Advanced Robotics, ed. D. Brugali, 2006.

[5] C. Urmson, R. Simmons and I. Nesnas, “A Generic
Framework for Robotic Navigation”, in Proc. of the
IEEE Aerospace Conference, Big Sky Montana, 2003.

[6] G. Pardo-Castellote et al, “Controlshell: A Software
Architecture for Complex Electromechanical Systems”,
Int. Journal of Robotics Research, 17(4), 1988.

[7] J. Borrelly et al, “The ORCCAD Architecture”, Int.
Journal of Robotics Research, 17(4), April 1998.

[8] R. Simmons and D. Apfelbaum, “A Task Description

Language for Robot Control,” in Proc. of the IEEE/RSJ
Intelligent Robotics and Systems Conf., 1998.

[9] The Orca Robotics Project, http://orca-robotics.
sourceforge.net.

[10] R.T. Vaughan, B. Gerkey and A. Howard, "On Device
Abstractions For Portable, Resuable Robot Code", in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robot
Systems, pp. 2121-2427, 2003.

[11] E. Gamma et al, Design Patterns: Elements of Reusable
Object-Oriented Software, Reading, Mass: Addison-
Wesley, 1995.

[12] S.M. LaValle, Planning Algorithms, Cambridge
University Press, 2006.

[13] H.D. Nayar, I.A. Nesnas, "Re-usable Kinematic Models
and Algorithms for Manipulators and Vehicles”, in
Proc. of the Int. Conf. on Intel. Robots & Systems, 2007.

